17 research outputs found

    Effective Use of Dilated Convolutions for Segmenting Small Object Instances in Remote Sensing Imagery

    Full text link
    Thanks to recent advances in CNNs, solid improvements have been made in semantic segmentation of high resolution remote sensing imagery. However, most of the previous works have not fully taken into account the specific difficulties that exist in remote sensing tasks. One of such difficulties is that objects are small and crowded in remote sensing imagery. To tackle with this challenging task we have proposed a novel architecture called local feature extraction (LFE) module attached on top of dilated front-end module. The LFE module is based on our findings that aggressively increasing dilation factors fails to aggregate local features due to sparsity of the kernel, and detrimental to small objects. The proposed LFE module solves this problem by aggregating local features with decreasing dilation factor. We tested our network on three remote sensing datasets and acquired remarkably good results for all datasets especially for small objects

    Hierarchical Neural Memory Network for Low Latency Event Processing

    Full text link
    This paper proposes a low latency neural network architecture for event-based dense prediction tasks. Conventional architectures encode entire scene contents at a fixed rate regardless of their temporal characteristics. Instead, the proposed network encodes contents at a proper temporal scale depending on its movement speed. We achieve this by constructing temporal hierarchy using stacked latent memories that operate at different rates. Given low latency event steams, the multi-level memories gradually extract dynamic to static scene contents by propagating information from the fast to the slow memory modules. The architecture not only reduces the redundancy of conventional architectures but also exploits long-term dependencies. Furthermore, an attention-based event representation efficiently encodes sparse event streams into the memory cells. We conduct extensive evaluations on three event-based dense prediction tasks, where the proposed approach outperforms the existing methods on accuracy and latency, while demonstrating effective event and image fusion capabilities. The code is available at https://hamarh.github.io/hmnet/Comment: Accepted to CVPR 202

    Detecting Object-Level Scene Changes in Images with Viewpoint Differences Using Graph Matching

    No full text
    We developed a robust object-level change detection method that could capture distinct scene changes in an image pair with viewpoint differences. To achieve this, we designed a network that could detect object-level changes in an image pair. In contrast to previous studies, we considered the change detection task as a graph matching problem for two object graphs that were extracted from each image. By virtue of this, the proposed network more robustly detected object-level changes with viewpoint differences than existing pixel-level approaches. In addition, the network did not require pixel-level change annotations, which have been required in previous studies. Specifically, the proposed network extracted the objects in each image using an object detection module and then constructed correspondences between the objects using an object matching module. Finally, the network detected objects that appeared or disappeared in a scene using the correspondences that were obtained between the objects. To verify the effectiveness of the proposed network, we created a synthetic dataset of images that contained object-level changes. In experiments on the created dataset, the proposed method improved the F1 score of conventional methods by more than 40%. Our synthetic dataset will be available publicly online

    RGB Image Prioritization Using Convolutional Neural Network on a Microprocessor for Nanosatellites

    No full text
    Nanosatellites are being widely used in various missions, including remote sensing applications. However, the difficulty lies in mission operation due to downlink speed limitation in nanosatellites. Considering the global cloud fraction of 67%, retrieving clear images through the limited downlink capacity becomes a larger issue. In order to solve this problem, we propose an image prioritization method based on cloud coverage using CNN. The CNN is designed to be lightweight and to be able to prioritize RGB images for nanosatellite application. As previous CNNs are too heavy for onboard processing, new strategies are introduced to lighten the network. The input size is reduced, and patch decomposition is implemented for reduced memory usage. Replication padding is applied on the first block to suppress border ambiguity in the patches. The depth of the network is reduced for small input size adaptation, and the number of kernels is reduced to decrease the total number of parameters. Lastly, a multi-stream architecture is implemented to suppress the network from optimizing on color features. As a result, the number of parameters was reduced down to 0.4%, and the inference time was reduced down to 4.3% of the original network while maintaining approximately 70% precision. We expect that the proposed method will enhance the downlink capability of clear images in nanosatellites by 112%

    Extension of Improved Particle and Energy Confinement Regime in the Core of LHD Plasma

    No full text
    corecore